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§Today’s miniLED displays can be divided into multiple arrays. Each miniLED array with
€1900 pixels can have 60 channels where each channel has 15 LEDs connected in series.
g To drive multi-channel miniLEDs in parallel from a low input voltage V,, (= 6V), a boost
S converter with high output voltage (up to 30V) and high output current (up to 1.2A for
82000 nits) is required where the conversion ratio (CR=V/V}y) is 5. Since the inductor
gcurrent I, =000/ (1-D) of the conventional 2-switch (2S) boost converter is high, where
g I oap is the load current and D is the duty cycle, 2S boost converters have low efficiency
—and high output voltage ripple. Although the boost converter assisted by a series flying
Scapacitor g can reduce the inductor current level to improve efficiency [1-5], C¢ lacks
~energy under high CR and high loading conditions. At the top of Fig. 17.9.1, both
gtechniques in [1] and [2] charge the C; during ¢2. In case of high CR, the duration of 2
nbecomes small to seriously affect the charging time. Hence, due to insufficient charge
mstored in G, the driving capability will decrease. At no load (left of Fig. 17.9.2), [1] fails
—to regulate and D is 0.87 in [2] to have CR=>5. Interestingly, both [1] and [2] fail to have
§CR=5 at load current=1.2A. Although additional dual channel-interleaved three-level
© buck-boost (DTLBB) structure in [1] can alternatively charge two flying capacitors, the
Shardware overhead is double and the quiescent current becomes high.
o
egTherefore, to reduce the number of switches as compared to the state-of-the-art designs,
Sa 3-switch (3S) boost converter in this paper is proposed to charge the C¢ during ¢1 to
g'rfit high CR conditions in the bottom of Fig. 17.9.1. At high CR, the extension of ¢1 can
wensure sufficient charge stored in Ce to increase driving capability at heavy loads.
;‘Meanwhile, due to the series connection of the inductor and the C; during 92, the
Qinductor current can be lowered by the reduced voltage across the inductor. The
~'maximum voltage stress across the switch is Vqy-V,y (=24V) compared to 2Voy-Viy
( 54V) in [2] and Vyyr (=30V) in [4]. In [2], since the series connection contains the
|nductor Cr, and Cgyyy, the insufficient energy stored in C; under heavy load becomes
8m0re serious. On the contrary, during 91, the proposed 3S boost converter uses V), to
“charge the inductor and G simultaneously to ensure high driving capability. Thus, the
vCR of the proposed 3S boost converter can be much higher than that of [2]. On the left
03|de of Fig. 17.9.2, D (duration of ¢1) is only 0.73 at CR=5 and no load while the duty
s-|ncreases to 0.81 at load current = 1.2 A. Furthermore, the discontinuous conduction
: mode (DCM) can be easily realized in 3S boost converter after adding an additional DCM
Ophase @pcw- The DCM operation in [4] will induce a reverse resonance between the
mductor and the capacitor. The @y in the proposed 3S boost converter can significantly
uncrease the light load efficiency since the off-time period is inversely proportional to
%Ioading current. More importantly, since only three power switches are used, both
gswitching and conduction losses can be reduced as compared to [1-5].

%With the same positive slope (=V,/L) of I, the insertion of C; can lower the negative
@slope of I, to “(2V,y-Vour)/L’ compared to large negative slope of ‘(V,y-Voyr)/L’ in the 25
Zboost converter in the bottom right of Fig. 17.9.2. In the continuous current mode (CCM),
gthe proposed 3S boost converter can have a lower inductor AC current ripple I which
gis 25% smaller than that of 2S boost converter at CR=5 since |, _ag(ss) = [(2Das)~1)/ D?5)]
Ex |__aces)- The 38 boost converter can charge inductor DC current |_pc by 680mA/cycle
(under maximum duty), while the 2S boost converter can only charge I, ¢ by
Lu270mA/cyc|e thus, fast transient response can be readily guaranteed. Besides, the 3S
= boost converter has a high CR = (2-D)/(1-D), so only D = 75% is needed to boost Vqyr
to 5V)y. In contrast, the 2S boost converter requires D = 80%, and [2] requires D = 83%.
Unfortunately, [1] and [3] cannot reach 5V,. Under the same load conditions, a lower
@1 indicates a lower I_pc. When CR = 5, the I, _p¢ of the 3S boost converter is 20%
smaller than that of the 2S boost converter.

The control loop adopts the hysteresis current mode in Fig. 17.9.3. The hysteresis
window ‘Vyys will be optimized by the frequency-controlled right-half-plane (RHP) zero
and reduced droop (FRZ-RD) circuit in Fig. 17.9.4. The inductor AC current Iy g6
generated by the RC network can greatly improve the load regulation since the error
caused by inductor DC level can be eliminated by turning on ‘Sgeger” at the beginning of

each cycle [6]. To improve light-load efficiency, a high-precision zero-current-detection
(ZCD) circuit is proposed to solve the inaccuracy problem in conventional ZCD circuits.
Conventional ZCD circuits in [1-2] will generate larger negative inductor current and
power loss due to the lower value of ‘I, x Ry’ since Rgy of the power MOSFET (upper
right in Fig. 17.9.3) is small. Due to inherent delay in the comparator, the increasing
power loss will significantly reduce the efficiency. Thus, the proposed ZCD uses the C;
to detect the inductor zero current in advance. The bottom left of Fig. 17.9.3 shows the
operation of C¢ voltage based ZCD pre-detector. In 92, as the voltage across Coyr
increases, lgoyr Will become lower. When g7 is equal to zero before @1, it means that
Coyur reaches saturation earlier, and the reverse inductor current will appear later. At the
time that dV¢yr/dt = 0 and dVe/dt = dVy/dt, lgeyr becomes negative and flows into G to
cause the decrease of Vy. The generated ZCDpge Signal can indicate whether ZCD occurs
by sensing the dV,/dt=0. Finally, the delay ZCDpge generated by the ZCD least significant
bit (LSB) tuner will trigger the ZCD signal to turn off ‘S3".

The frequency-dependent RHP zero of 3S boost converter is higher than that of 2S boost
converter (top of Fig. 17.9.4). Thus, changing fg, during transients can reduce the
voltage drop when fgy = 0.4MHz (RHP zero at point b =1.93MHz). Recovery time can be
reduced when fgy, = 2.3MHz (RHP zero at point ¢ = 0.49MHz) [7]. The proposed FRZ-
RD circuit can change the hysteresis window “Vyys” corresponding to the load (bottom
of Fig. 17.9.4). The detection of error amplifier output Vg, 1 can decide whether the
transient occurs. In case of light-to-heavy load change, the transient signal Vigay
becomes high and the Vs is expanded to decrease fgy to work in the droop reduce
(DR) mode in Block1. The delayed signal Ve, pe ay COMpares with Vg, (5 to detect whether
Vur Starts to rebound in Block2. When Vs is greatly reduced to enter the short recovery
(SR) mode, lower V,s can increase fgy by moving RHP zero to a lower frequency to
achieve fast transients. Finally, the system will return to the steady-state (SS) mode and
the RHP zero will return to point a and Vg, 5 becomes lower than Vger,. The duration of
the restoration signal Vgesrore Will make Vs Smoother because the nonlinear effect
needs more time to stabilize it.

The test chip is fabricated in a 0.25um process. The input voltage ranges from 4 to 12V,
and the output voltage is regulated to 30V. As shown in Fig. 17.9.5, the proposed 3S
boost converter can operate in CCM or DCM to suit the load requirements. The difference
between ZCDpge and ZCD is 58ns (bottom right in Fig. 17.9.5) and can respond to the
ZCD detection. The transient response (bottom left of Fig. 17.9.5) shows that the
recovery time is 42pus when the load changes from 120mA to 1.2A. Using FRZ-RD
technique, the proposed 3S boost converter only needs 8 switching cycles to stabilize
I, but 2S boost converter needs 39 cycles.

The table in Fig. 17.9.6 summarizes the performance of the proposed 3S boost converter
and compares it with the state-of-the-art designs. As shown in the table, the proposed
design can have the peak efficiency of 97.4%, 95.2%, 91.7% for CR = 2.5, 5, and 7.5,
respectively. The chip micrograph is shown in Fig. 17.9.7.
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Figure 17.9.1: C; charged in ¢2 in prior arts limits the driving capability in high CR
(top); 3S boost converter charges the C;in ¢1 fitting the demand of high CR, high
driving capability (bottom) and low voltage stress on switches.

Figure 17.9.2: Proposed 3S hoost converter has widest CR either under no load or
heavy load. The C; with sufficient energy can bring low inductor ripple, fast
transient response, and low inductor dc current.
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Figure 17.9.3: The overall architecture of the proposed 3S boost converter and the
C; voltage based ZCD pre-detector which can detect the reverse inductor current
in advance.
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Figure 17.9.5: Measured waveforms of proposed 3S boost converter and
conventional 2S boost converter.
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Figure 17.9.4: FRZ-RD circuit can automatically optimize the voltage droop and
transient response by adjusting to change the width of the hysteresis window Vs
to change the position of RHP zero.
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Figure 17.9.6: Comparison with the state-of-the-art designs including I gy, vs. CR,
measured efficiency vs. I oy, and comparison table.

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on April 15,2021 at 08:10:35 B#’@"l_ir%m IQEE )E‘;%ﬂ(b”&él’f PAPFaﬁgy

273



ISSCC 2021 PAPER CONTINUATIONS

Figure 17.9.7: Die micrograph.
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